论文标题

皱纹和可开发的锥体

Wrinkling and developable cones in centrally confined sheets

论文作者

Stein-Montalvo, Lucia, Guerra, Arman, Almeida, Kanani, Kodio, Ousmane, Holmes, Douglas P.

论文摘要

薄床单通过平滑的皱纹或将压力聚焦于小而尖锐的区域来应对限制。从工程学到生物学,地质,纺织品和艺术,薄床单都以各种方式包装和限制,但基本问题仍然存在着这些结构中的压力和模式如何形成的基本问题。使用实验和分子动力学(MD)模拟,我们探测了圆形片的限制响应,在其中部区域扁平,并通过环绘制了准静态。然后在外部的自由区域发展起来,然后被截短的锥体取代,该锥体在突然过渡到压力聚焦的过程中形成。我们探索与此事件相关的力以及皱纹的数量取决于几何形状。额外的圆锥体依次对片片进行模式,直到在大多数几何形状中恢复轴对称性。圆锥体大小对平面几何形状敏感。我们发现了对这种几何依赖性的粗粒描述,该描述取决于与渐近D-cone极限的接近度,在夹具尺寸接近零。这项工作有助于对薄纸的一般限制进行表征,同时扩大对D-Cone的理解,这是压力集中的基本要素,就像在现实的环境中一样。

Thin sheets respond to confinement by smoothly wrinkling, or by focusing stress into small, sharp regions. From engineering to biology, geology, textiles, and art, thin sheets are packed and confined in a wide variety of ways, and yet fundamental questions remain about how stresses focus and patterns form in these structures. Using experiments and molecular dynamics (MD) simulations, we probe the confinement response of circular sheets, flattened in their central region and quasi-statically drawn through a ring. Wrinkles develop in the outer, free region, then are replaced by a truncated cone, which forms in an abrupt transition to stress focusing. We explore how the force associated with this event, and the number of wrinkles, depend on geometry. Additional cones sequentially pattern the sheet, until axisymmetry is recovered in most geometries. The cone size is sensitive to in-plane geometry. We uncover a coarse-grained description of this geometric dependence, which diverges depending on the proximity to the asymptotic d-cone limit, where the clamp size approaches zero. This work contributes to the characterization of general confinement of thin sheets, while broadening the understanding of the d-cone, a fundamental element of stress focusing, as it appears in realistic settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源