论文标题
部分可观测时空混沌系统的无模型预测
Checklist Models for Improved Output Fluency in Piano Fingering Prediction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work we present a new approach for the task of predicting fingerings for piano music. While prior neural approaches have often treated this as a sequence tagging problem with independent predictions, we put forward a checklist system, trained via reinforcement learning, that maintains a representation of recent predictions in addition to a hidden state, allowing it to learn soft constraints on output structure. We also demonstrate that by modifying input representations -- which in prior work using neural models have often taken the form of one-hot encodings over individual keys on the piano -- to encode relative position on the keyboard to the prior note instead, we can achieve much better performance. Additionally, we reassess the use of raw per-note labeling precision as an evaluation metric, noting that it does not adequately measure the fluency, i.e. human playability, of a model's output. To this end, we compare methods across several statistics which track the frequency of adjacent finger predictions that while independently reasonable would be physically challenging to perform in sequence, and implement a reinforcement learning strategy to minimize these as part of our training loss. Finally through human expert evaluation, we demonstrate significant gains in performability directly attributable to improvements with respect to these metrics.