论文标题

了解自主驾驶中DNN推断的时间变化

Understanding Time Variations of DNN Inference in Autonomous Driving

论文作者

Liu, Liangkai, Wang, Yanzhi, Shi, Weisong

论文摘要

深度神经网络(DNN)由于其高度的感知,决策和控制而被广泛用于自主驾驶中。在诸如自动驾驶之类的安全至关重要系统中,执行诸如实时传感和感知之类的任务对车辆的安全至关重要,这需要应用程序的执行时间才能预测。但是,在DNN推断中观察到不可忽略的时间变化。当前的DNN推理研究忽略了时间变化问题或依靠调度程序来处理它。当前的工作都没有解释DNN推理时间变化的根本原因。了解DNN推理的时间变化成为自动驾驶实时时间表的基本挑战。在这项工作中,我们从六个角度分析了DNN推断的时间变化:数据,I/O,模型,运行时,硬件和端到端的感知系统。在理解DNN推断的时间变化时,得出了六个见解。

Deep neural networks (DNNs) are widely used in autonomous driving due to their high accuracy for perception, decision, and control. In safety-critical systems like autonomous driving, executing tasks like sensing and perception in real-time is vital to the vehicle's safety, which requires the application's execution time to be predictable. However, non-negligible time variations are observed in DNN inference. Current DNN inference studies either ignore the time variation issue or rely on the scheduler to handle it. None of the current work explains the root causes of DNN inference time variations. Understanding the time variations of the DNN inference becomes a fundamental challenge in real-time scheduling for autonomous driving. In this work, we analyze the time variation in DNN inference in fine granularity from six perspectives: data, I/O, model, runtime, hardware, and end-to-end perception system. Six insights are derived in understanding the time variations for DNN inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源