论文标题
自我监督的宽基线视觉伺服通过3D肩variance
Self-supervised Wide Baseline Visual Servoing via 3D Equivariance
论文作者
论文摘要
视觉宣传的挑战性输入设置之一是,当初始摄像头视图相距甚远时。这样的设置很困难,因为宽的基线会导致对象外观发生巨大变化并引起阻塞。本文为宽基线图像提供了一种新颖的自我监督的视觉伺服宣传方法,不需要3D地面真相监督。回归绝对相机相对于对象的现有方法需要以3D边界框或网格的形式的对象的3D地面真相数据。我们通过利用称为3D均衡的几何特性来了解连贯的视觉表示形式 - 表示表示作为3D转换的函数以可预测的方式进行转换。为了确保功能空间忠实于基础的大地测量空间,与均衡相结合的地质保存约束。我们设计了一个暹罗网络,该网络可以有效地强制执行这两个几何特性,而无需3D监督。借助学习的模型,可以简单地通过在学习空间中的梯度来推断相对转换,并用作闭环视觉伺服的反馈。我们的方法对来自YCB数据集的对象进行了评估,在使用3D监督的最新方法方面显示了视觉伺服任务上有意义的超越性能或对象对齐任务。我们的平均距离误差降低超过35%,成功率超过90%,误差耐受性。
One of the challenging input settings for visual servoing is when the initial and goal camera views are far apart. Such settings are difficult because the wide baseline can cause drastic changes in object appearance and cause occlusions. This paper presents a novel self-supervised visual servoing method for wide baseline images which does not require 3D ground truth supervision. Existing approaches that regress absolute camera pose with respect to an object require 3D ground truth data of the object in the forms of 3D bounding boxes or meshes. We learn a coherent visual representation by leveraging a geometric property called 3D equivariance-the representation is transformed in a predictable way as a function of 3D transformation. To ensure that the feature-space is faithful to the underlying geodesic space, a geodesic preserving constraint is applied in conjunction with the equivariance. We design a Siamese network that can effectively enforce these two geometric properties without requiring 3D supervision. With the learned model, the relative transformation can be inferred simply by following the gradient in the learned space and used as feedback for closed-loop visual servoing. Our method is evaluated on objects from the YCB dataset, showing meaningful outperformance on a visual servoing task, or object alignment task with respect to state-of-the-art approaches that use 3D supervision. Ours yields more than 35% average distance error reduction and more than 90% success rate with 3cm error tolerance.