论文标题
Nilpotent群体的Frobenius非稳定性
Frobenius Non-Stability of Nilpotent Groups
论文作者
论文摘要
如果从弗罗贝尼乌斯规范中的“几乎乘法”中的每个函数到统一矩阵,那么可计数的离散组被认为是frobenius stable。本文的目的是表明,实际上不是循环的有限生成的nilpotent群体不是Frobenius稳定。我们的论点证明了其他不符合的Schatten $ p $ -norms的结果相同,$ 1 <p \ le \ infty $。
A countable discrete group is said to be Frobenius stable if every function from the group to unitary matrices that is "almost multiplicative" in the Frobenius norm is "close" to a unitary representation in the Frobenius norm. The purpose of this paper is to show that finitely generated nilpotent groups that are not virtually cyclic are not Frobenius stable. Our argument proves the same result for other unnormalized Schatten $p$-norms with $1<p\le\infty$.