论文标题

系统发育树的瓦尔德空间的基础

Foundations of the Wald Space for Phylogenetic Trees

论文作者

Lueg, Jonas, Garba, Maryam K., Nye, Tom M. W., Huckemann, Stephan F.

论文摘要

物种之间的进化关系由系统发育树代表,但是由于进化的随机性质,这些关系会受到不确定性。为了正确量化从生物学数据推断出的可能进化树的统计分析期间,必须适当地量化系统发育树空间的几何形状。最近,引入了WALD空间:树木的长度空间,这是对称正定矩阵的一定子集。在这项工作中,将WALD空间正式引入,并详细研究了其拓扑和结构。特别是,我们表明Wald Space具有开放立方体的不相交结合的拓扑,它是可缩度的,并且通过对立方体边界的仔细表征,我们证明Wald Space是惠特尼的类型(a)类型的惠特尼分层空间。在对称正定矩阵上施加了由仿射不变的度量诱导的度量,我们证明了Wald Space是一个地球分层分层空间。提出了一种新的数值方法,并研究了用于构建大地测量学,Fréchet平均值的计算以及WALD空间中曲率的计算。这项工作旨在作为对该空间进行进一步几何和统计研究的数学基础。

Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterization of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源