论文标题

在工厂地板上:工业规模广告推荐模型的ML工程

On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models

论文作者

Anil, Rohan, Gadanho, Sandra, Huang, Da, Jacob, Nijith, Li, Zhuoshu, Lin, Dong, Phillips, Todd, Pop, Cristina, Regan, Kevin, Shamir, Gil I., Shivanna, Rakesh, Yan, Qiqi

论文摘要

对于工业规模的广告系统,预测广告点击率(CTR)是一个核心问题。广告点击构成了一类重要的用户参与,通常用作广告对用户有用的主要信号。此外,在每次点击收费的广告系统中,单击费用期望值直接输入价值估计。因此,对于大多数互联网广告公司而言,CTR模型开发是一项重大投资。此类问题的工程需要许多适合在线学习的机器学习(ML)技术,这些技术远远超出了传统的准确性改进,尤其是有关效率,可重复性,校准,信用归因。我们介绍了Google搜索广告CTR模型中部署的实用技术的案例研究。本文提供了一项行业案例研究,该研究强调了当前的ML研究的重要领域,并说明了如何评估有影响力的新ML方法,并在大规模的工业环境中有用。

For industrial-scale advertising systems, prediction of ad click-through rate (CTR) is a central problem. Ad clicks constitute a significant class of user engagements and are often used as the primary signal for the usefulness of ads to users. Additionally, in cost-per-click advertising systems where advertisers are charged per click, click rate expectations feed directly into value estimation. Accordingly, CTR model development is a significant investment for most Internet advertising companies. Engineering for such problems requires many machine learning (ML) techniques suited to online learning that go well beyond traditional accuracy improvements, especially concerning efficiency, reproducibility, calibration, credit attribution. We present a case study of practical techniques deployed in Google's search ads CTR model. This paper provides an industry case study highlighting important areas of current ML research and illustrating how impactful new ML methods are evaluated and made useful in a large-scale industrial setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源