论文标题
在非恒定曲率空间上的量子非线性振荡器的香农信息熵
Shannon information entropy for a quantum nonlinear oscillator on a space of non-constant curvature
论文作者
论文摘要
所谓的DARBOUX III振荡器是在具有非恒定负曲率的径向对称空间上定义的确切解决的$ n $二维非线性振荡器。该振荡器可以解释为通常与基础空间曲率直接相关的非阴性参数$λ$的平滑$ n $维谐波振荡器的平滑(超级)整合变形。在本文中,介绍了Darboux III振荡器的香农信息熵的详细研究,并分析了熵和曲率之间的相互作用。特别是,可以在$ n $维情况的情况下找到该位置空间中香农熵的分析结果,并且在消失的率$λ\至0 $的情况下恢复了$ n $维谐波振荡器的量子状态的已知结果。但是,Darboux III波函数的傅立叶变换不能以精确的形式计算,从而阻止了动量空间中信息熵的分析研究。然而,我们在一个和三维情况下都在数值上计算了后者,我们发现,通过增加负曲率的绝对值(通过较大的$λ$参数)的绝对值,位置空间中的信息熵增加,而在动量空间中,它变小。该结果确实与该量子非线性振荡器的波函数的扩散特性一致,这些量子振荡器已明确显示。在曲率方面也分析了位置和动量空间的熵的总和:对于所有激发状态,总熵都以$λ$减少,但是对于基础状态,当$λ$消失时,总熵被最小化,并且始终满足相应的不确定性关系。
The so-called Darboux III oscillator is an exactly solvable $N$-dimensional nonlinear oscillator defined on a radially symmetric space with non-constant negative curvature. This oscillator can be interpreted as a smooth (super)integrable deformation of the usual $N$-dimensional harmonic oscillator in terms of a non-negative parameter $λ$ which is directly related to the curvature of the underlying space. In this paper, a detailed study of the Shannon information entropy for the quantum version of the Darboux III oscillator is presented, and the interplay between entropy and curvature is analysed. In particular, analytical results for the Shannon entropy in the position space can be found in the $N$-dimensional case, and the known results for the quantum states of the $N$-dimensional harmonic oscillator are recovered in the limit of vanishing curvature $λ\to 0$. However, the Fourier transform of the Darboux III wave functions cannot be computed in exact form, thus preventing the analytical study of the information entropy in momentum space. Nevertheless, we have computed the latter numerically both in the one and three-dimensional cases and we have found that by increasing the absolute value of the negative curvature (through a larger $λ$ parameter) the information entropy in position space increases, while in momentum space it becomes smaller. This result is indeed consistent with the spreading properties of the wave functions of this quantum nonlinear oscillator, which are explicitly shown. The sum of the entropies in position and momentum spaces has been also analysed in terms of the curvature: for all excited states such total entropy decreases with $λ$, but for the ground state the total entropy is minimised when $λ$ vanishes, and the corresponding uncertainty relation is always fulfilled.