论文标题
在计算调查权重的同时,使用辅助边际分布进行无响应的指示,并用于估计选民投票率
Using auxiliary marginal distributions in imputations for nonresponse while accounting for survey weights, with application to estimating voter turnout
论文作者
论文摘要
当前的人口调查是研究谁在选举中投票的黄金标准数据来源。但是,它遭受了潜在的不可签名的单位和项目无响应的困扰。幸运的是,在选举之后,从行政来源知道选民总数,可用于调整潜在的无响应偏见。我们提出了一种基于模型的方法来利用这种已知的选民投票率,以及人口统计学变量的其他人口边际分布,用于单位和项目无响应。在此过程中,我们确保鉴于已知的边缘产生合理的基于设计的估计值。我们介绍并利用了一个混合缺失模型,其中包括用于单位无响应的模式混合模型和项目无响应的选择模型。使用仿真研究,我们说明了模型的重复采样性能在不同的关于丢失机制的假设下。我们使用该模型通过亚组对北卡罗来纳州的2018年人口调查来检查选民投票。作为一种敏感性分析,我们检查了当我们允许过度报告时,结果如何变化,即,当他们实际上没有投票时,他们会自我报告。
The Current Population Survey is the gold-standard data source for studying who turns out to vote in elections. However, it suffers from potentially nonignorable unit and item nonresponse. Fortunately, after elections, the total number of voters is known from administrative sources and can be used to adjust for potential nonresponse bias. We present a model-based approach to utilize this known voter turnout rate, as well as other population marginal distributions of demographic variables, in multiple imputation for unit and item nonresponse. In doing so, we ensure that the imputations produce design-based estimates that are plausible given the known margins. We introduce and utilize a hybrid missingness model comprising a pattern mixture model for unit nonresponse and selection models for item nonresponse. Using simulation studies, we illustrate repeated sampling performance of the model under different assumptions about the missingness mechanisms. We apply the model to examine voter turnout by subgroups using the 2018 Current Population Survey for North Carolina. As a sensitivity analysis, we examine how results change when we allow for over-reporting, i.e., individuals self-reporting that they voted when in fact they did not.