论文标题

旋转对球状簇中第二代恒星形成的作用

The role of rotation on the formation of second generation stars in globular clusters

论文作者

Lacchin, Elena, Calura, Francesco, Vesperini, Enrico, Mastrobuono-Battisti, Alessandra

论文摘要

通过3D流体动力模拟,我们探讨了球状簇(GC)中第二代(SG)恒星形成中旋转的影响。我们的模拟遵循第一代(FG)内部旋转GC的SG形成; SG恒星由FG渐近巨型分支(AGB)射出和系统积聚的原始气体形成。我们已经探索了FG簇的两个不同初始旋转速度曲线,以及旋转轴的两个不同的倾斜度相对于外部插入气体的运动方向,其密度也已变化。对于低(10^-24 g cm^-3)的外部气体密度,形成了SG氦增强恒星的盘。 SG的特征是不同的化学动力相空间模式:与氦增强的SG子系统相比,它比中等氦增强的FG更快地旋转。在具有较高的外部气体密度(10^-23 g cm^-3)的模型中,内部SG盘被外部气体的早期到达而破坏,只有一小部分高度增强的氦星可以保留出生时获得的旋转。旋转轴与插入气体方向和速度曲线方向之间的倾斜角变化可以稍微改变恒星盘的程度和旋转幅度。在改变旋转轴和插入气体方向之间的倾斜角时,在我们的模拟的时间板上没有发现显着变化,而不同的速度曲线可以稍微改变恒星盘的程度和旋转幅度。我们的模拟结果说明了多个人群的动力学和化学性质之间的复杂联系,并为观察性研究的解释提供了新的要素,以及对多种群GC的动力学的未来研究。

By means of 3D hydrodynamic simulations, we explore the effects of rotation in the formation of second-generation (SG) stars in globular clusters (GC). Our simulations follow the SG formation in a first-generation (FG) internally rotating GC; SG stars form out of FG asymptotic giant branch (AGB) ejecta and external pristine gas accreted by the system. We have explored two different initial rotational velocity profiles for the FG cluster and two different inclinations of the rotational axis with respect to the direction of motion of the external infalling gas, whose density has also been varied. For a low (10^-24 g cm^-3) external gas density, a disk of SG helium-enhanced stars is formed. The SG is characterized by distinct chemo-dynamical phase space patterns: it shows a more rapid rotation than the FG with the helium-enhanced SG subsystem rotating more rapidly than the moderate helium-enhanced one. In models with high external gas density (10^-23 g cm^-3), the inner SG disc is disrupted by the early arrival of external gas and only a small fraction of highly enhanced helium stars preserves the rotation acquired at birth. Variations in the inclination angle between the rotation axis and the direction of the infalling gas and the velocity profile can slightly alter the extent of the stellar disc and the rotational amplitude. No significant variation has been found in the timespan of our simulations when changing the inclination angle between the rotation axis and the direction of the infalling gas, while different velocity profiles can slightly alter the extent of the stellar disc and the rotational amplitude. The results of our simulations illustrate the complex link between dynamical and chemical properties of multiple populations and provide new elements for the interpretation of observational studies and future investigations of the dynamics of multiple-population GCs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源