论文标题
$ \ ell_1 $ -preduals和弱$^*$固定点属性的明确型号$ \ ell_1 $
Explicit models of $\ell_1$-preduals and the weak$^*$ fixed point property in $\ell_1$
论文作者
论文摘要
我们提供了$ \ ell_1 $的所有预期的具体等距描述,其中$ \ ell_1 $中的标准基础的有限数为$ W^*$ - 限制点。然后,我们将此结果应用于$ \ ell_1 $ -predual $ x $的示例,以使其双重$ x^*$缺少弱$^*$固定点属性(简短地,$ w^*$ fpp),但是$ x $不包含任何超级$ c $ c converence $ c contrance $ c convers $ c convers $ c convers $ conventual pertual的conventual pertual的converal $ c convers $ $ \ ell_1 $和$w_α^*$缺少$ w^*$ - fpp。这回答了本作者2017年论文中剩下的问题。
We provide a concrete isometric description of all the preduals of $\ell_1$ for which the standard basis in $\ell_1$ has a finite number of $w^*$-limit points. Then, we apply this result to give an example of an $\ell_1$-predual $X$ such that its dual $X^*$ lacks the weak$^*$ fixed point property for nonexpansive mappings (briefly, $w^*$-FPP), but $X$ does not contain an isometric copy of any hyperplane $W_α$ of the space $c$ of convergent sequences such that $W_α$ is a predual of $\ell_1$ and $W_α^*$ lacks the $w^*$-FPP. This answers a question left open in the 2017 paper of the present authors.