论文标题

对光网络中流量驱动的服务提供的机器学习调查

Survey on Machine Learning for Traffic-Driven Service Provisioning in Optical Networks

论文作者

Panayiotou, Tania, Michalopoulou, Maria, Ellinas, Georgios

论文摘要

全球互联网流量的前所未有的增长,再加上较大的时空波动,在某种程度上创造了可预测的潮汐交通状况,它激发了从反应性到主动的,最终朝着自适应光学网络发展的发展。在这些网络中,流量驱动的服务供应可以解决网络过度提供的问题,并更好地适应流量变化,同时将服务质量保持在所需的水平。这样的方法将减少网络资源过度提供,从而降低总网络成本。这项调查对机器学习的最新技术(ML)的技术进行了全面审查,该技术在光学层进行了交通驱动的服务提供。最初提出了光网络中服务供应的演变,然后概述用于交通驱动的服务提供的ML技术。详细介绍了ML辅助服务供应方法,包括积极主动和自适应网络中的预测性和规范服务提供框架。对于所有概述的技术,还提出了有关其局限性,研究挑战和潜在机会的讨论。

The unprecedented growth of the global Internet traffic, coupled with the large spatio-temporal fluctuations that create, to some extent, predictable tidal traffic conditions, are motivating the evolution from reactive to proactive and eventually towards adaptive optical networks. In these networks, traffic-driven service provisioning can address the problem of network over-provisioning and better adapt to traffic variations, while keeping the quality-of-service at the required levels. Such an approach will reduce network resource over-provisioning and thus reduce the total network cost. This survey provides a comprehensive review of the state of the art on machine learning (ML)-based techniques at the optical layer for traffic-driven service provisioning. The evolution of service provisioning in optical networks is initially presented, followed by an overview of the ML techniques utilized for traffic-driven service provisioning. ML-aided service provisioning approaches are presented in detail, including predictive and prescriptive service provisioning frameworks in proactive and adaptive networks. For all techniques outlined, a discussion on their limitations, research challenges, and potential opportunities is also presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源