论文标题

一种基于学习的新型强大模型预测控制能源管理策略,用于燃料电池电动汽车

A novel learning-based robust model predictive control energy management strategy for fuel cell electric vehicles

论文作者

Li, Shibo, Hou, Zhuoran, Chu, Liang, Jiang, Jingjing, Zhang, Yuanjian

论文摘要

多源机电耦合使燃料电池电动汽车(FCEVS)的能源管理相对非线性和复杂,尤其是在4轮驱动(4WD)FCEV的类型中。复杂的非线性系统的准确状态观察是FCEV中出色能源管理的基础。为了释放FCEV的节能潜力,为4WD FCEV提出了一种基于学习的新型健壮模型预测控制(LRMPC)策略,这有助于多个能源之间的合适功率分布。基于机器学习(ML)的精心设计的策略将非线性系统的知识转化为具有出色鲁棒性能的显式控制方案。首先,具有高回归准确性和出色概括能力的ML方法是离线训练的,以建立SOC的精确状态观察者。然后,使用州观察者生成的SOC的显式数据表用于抓住准确的状态更改,其输入功能包括车辆状态和车辆组件状态。具体来说,提供未来速度参考的车辆速度估计是由深森林构建的。接下来,将包括显式数据表和车辆速度估计的组件与模型预测控制(MPC)结合使用,以释放FCEV中多五元系统的最先进的节能能力,其名称是LRMPC。最后,在模拟测试中进行了详细的评估,以验证LRMPC的进步性能。相应的结果突出了LRMPC的最佳控制效应和强大的实时应用能力。

The multi-source electromechanical coupling makes the energy management of fuel cell electric vehicles (FCEVs) relatively nonlinear and complex especially in the types of 4-wheel-drive (4WD) FCEVs. Accurate state observing for complicated nonlinear system is the basis for fantastic energy managing in FCEVs. Aiming at releasing the energy-saving potential of FCEVs, a novel learning-based robust model predictive control (LRMPC) strategy is proposed for a 4WD FCEV, contributing to suitable power distribution among multiple energy sources. The well-designed strategy based on machine learning (ML) translates the knowledge of the nonlinear system to the explicit controlling scheme with superior robust performance. To start with, ML methods with high regression accuracy and superior generalization ability are trained offline to establish the precise state observer for SOC. Then, explicit data tables for SOC generated by state observer are used for grabbing accurate state changing, whose input features include the vehicle status and the states of vehicle components. To be specific, the vehicle velocity estimation for providing future speed reference is constructed by deep forest. Next, the components including explicit data tables and vehicle velocity estimation are combined with model predictive control (MPC) to release the state-of-the-art energy-saving ability for the multi-freedom system in FCEVs, whose name is LRMPC. At last, the detailed assessment is performed in simulation test to validate the advancing performance of LRMPC. The corresponding results highlight the optimal control effect in energy-saving potential and strong real-time application ability of LRMPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源