论文标题

使用截短方程(CUT-E)的集体动力学:使用几个分子模型模拟集体强耦合方案

Collective dynamics Using Truncated Equations (CUT-E): simulating the collective strong coupling regime with few-molecule models

论文作者

Pérez-Sánchez, Juan B., Koner, Arghadip, Stern, Nathaniel P., Yuen-Zhou, Joel

论文摘要

由于这些系统的较大维度(分子发射器的数量为$ n \ of 10^{6} -10} -10^{10} $),对简单量子发射器集合模型(例如Tavis-Cummings)之外的分子极化子的研究非常具有挑战性。这种复杂性将现有模型限制在分子自由度的丰富物理和化学中,或者人为地将描述限制为少数分子。在这项工作中,我们利用置换对称性大大降低了\ textit {ab-initio}量子动力学模拟的计算成本。此外,我们发现了这些系统中存在的时间尺度的新兴层次结构,这证明使用\ textit {有效}单分子近似捕获整个整体的动力学,这一近似值将变得准确如$ n \ rightarrow \ infty $。我们还系统地将有限的$ n $校正得出,并表明添加$ k $额外有效的分子足以说明现象的比率规模为$ \ nathcal {o}(n^{ - k})$。基于此结果,我们讨论了如何无缝修改现有的单分子强耦合模型,以描述相应集合的动力学以及每个模型预测的现象中的关键差异。我们将这种方法称为使用截短方程(CUT-E)的集体动力学,它根据北极子松弛率的众所周知的结果进行基准测试,并将其应用于不同分子物种之间的通用腔体辅助能量漏斗机制。除了成为计算高效的工具外,这种形式主义还提供了直观的图片,以理解明亮和黑暗状态在化学反应性中的作用,这是为北极星化学产生强大策略所必需的。

The study of molecular polaritons beyond simple quantum emitter ensemble models (e.g., Tavis-Cummings) is challenging due to the large dimensionality of these systems (the number of molecular emitters is $N\approx 10^{6}-10^{10}$) and the complex interplay of molecular electronic and nuclear degrees of freedom. This complexity constraints existing models to either coarse-grain the rich physics and chemistry of the molecular degrees of freedom or artificially limit the description to a small number of molecules. In this work, we exploit permutational symmetries to drastically reduce the computational cost of \textit{ab-initio} quantum dynamics simulations for large $N$. Furthermore, we discover an emergent hierarchy of timescales present in these systems, that justifies the use of an \textit{effective} single molecule to approximately capture the dynamics of the entire ensemble, an approximation that becomes exact as $N\rightarrow \infty$. We also systematically derive finite $N$ corrections to the dynamics, and show that addition of $k$ extra effective molecules is enough to account for phenomena whose rates scale as $\mathcal{O}(N^{-k})$. Based on this result, we discuss how to seamlessly modify existing single-molecule strong coupling models to describe the dynamics of the corresponding ensemble, as well as the crucial differences in phenomena predicted by each model. We call this approach Collective dynamics Using Truncated Equations (CUT-E), benchmark it against well-known results of polariton relaxation rates, and apply it to describe a universal cavity-assisted energy funneling mechanism between different molecular species. Beyond being a computationally efficient tool, this formalism provides an intuitive picture for understanding the role of bright and dark states in chemical reactivity, necessary to generate robust strategies for polariton chemistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源