论文标题

内核学习可解释的气候科学

Kernel Learning for Explainable Climate Science

论文作者

Lalchand, Vidhi, Tazi, Kenza, Cheema, Talay M., Turner, Richard E., Hosking, Scott

论文摘要

上印度河盆地喜马拉雅山为2.7亿人和无数的生态系统提供水。然而,在该领域,降水是水文建模的关键组成部分。围绕这种不确定性的关键挑战来自整个盆地降水的复杂时空分布。在这项工作中,我们提出了具有结构化非平稳核的高斯过程,以模拟UIB中的降水模式。以前的尝试在印度库什karakoram喜马拉雅地区量化或建模降水通常是定性的,或者包括在较低分辨率下无法解决的粗略假设和简化。这项研究也几乎没有错误传播。我们用非平稳的Gibbs内核参数为输入依赖性长度尺度来解释降水的空间变化。这允许后函数样品适应印度河地区独特的潜在地形所固有的不同降水模式。输入依赖的长度尺寸由带有固定平方 - 指数内核的潜在高斯过程控制,以使功能级别的超参数平稳变化。在消融实验中,我们通过证明其对空间协方差,时间结构和关节时空重建的能力来激励提出的内核的每个组成部分。我们通过固定的高斯工艺和深层的高斯工艺对模型进行基准测试。

The Upper Indus Basin, Himalayas provides water for 270 million people and countless ecosystems. However, precipitation, a key component to hydrological modelling, is poorly understood in this area. A key challenge surrounding this uncertainty comes from the complex spatial-temporal distribution of precipitation across the basin. In this work we propose Gaussian processes with structured non-stationary kernels to model precipitation patterns in the UIB. Previous attempts to quantify or model precipitation in the Hindu Kush Karakoram Himalayan region have often been qualitative or include crude assumptions and simplifications which cannot be resolved at lower resolutions. This body of research also provides little to no error propagation. We account for the spatial variation in precipitation with a non-stationary Gibbs kernel parameterised with an input dependent lengthscale. This allows the posterior function samples to adapt to the varying precipitation patterns inherent in the distinct underlying topography of the Indus region. The input dependent lengthscale is governed by a latent Gaussian process with a stationary squared-exponential kernel to allow the function level hyperparameters to vary smoothly. In ablation experiments we motivate each component of the proposed kernel by demonstrating its ability to model the spatial covariance, temporal structure and joint spatio-temporal reconstruction. We benchmark our model with a stationary Gaussian process and a Deep Gaussian processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源