论文标题

关于某些二次非理性的等效性

On the equivalence of certain quadratic irrationals

论文作者

Girstmair, Kurt

论文摘要

本文处理固定正整数$ v $和$ q $,$ v $,$ v $而不是正方形的$ m/q+\ sqrt v $的二次非理性,而变化的整数$ m $,$(m,q)= 1 $。两个数字$ m/q+\ sqrt v $,$ n/q+\ sqrt v $如果可以使用同一时期编写它们的持续分数扩展,则是等效的(从经典意义上讲)。就佩尔方程的解决方案而言,我们给出了相当的必要条件。此外,我们确定了这些二次非理性属于的等效类的数量。

This paper deals with quadratic irrationals of the form $m/q+\sqrt v$ for fixed positive integers $v$ and $q$, $v$ not a square, and varying integers $m$, $(m,q)=1$. Two numbers $m/q+\sqrt v$, $n/q+\sqrt v$ of this kind are equivalent (in a classical sense) if their continued fraction expansions can be written with the same period. We give a necessary and sufficient condition for the equivalence in terms of solutions of Pell's equation. Moreover, we determine the number of equivalence classes to which these quadratic irrationals belong.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源