论文标题

探索了解英语动词课程和大型预训练语言模型的交替

Probing for Understanding of English Verb Classes and Alternations in Large Pre-trained Language Models

论文作者

Yi, David K., Bruno, James V., Han, Jiayu, Zukerman, Peter, Steinert-Threlkeld, Shane

论文摘要

我们研究了Levin(1993)所述的动词交替类在多大程度上使用大型预训练的语言模型(PLM)的嵌入,例如Bert,Roberta,Electra和Deberta,使用选择性构建的词语和句子级别的预测任务。我们遵循并扩展了Kann等人的实验。 (2019年),旨在探测静态嵌入是否编码动词的框架选择性。在单词和句子级别上,我们发现来自PLM的上下文嵌入不仅超过了非上下文的嵌入,而且在大多数交替类中的任务上达到了惊人的高精度。此外,我们发现有证据表明,与所有探测任务中的较低层相比,PLM的中间层平均得分更好。

We investigate the extent to which verb alternation classes, as described by Levin (1993), are encoded in the embeddings of Large Pre-trained Language Models (PLMs) such as BERT, RoBERTa, ELECTRA, and DeBERTa using selectively constructed diagnostic classifiers for word and sentence-level prediction tasks. We follow and expand upon the experiments of Kann et al. (2019), which aim to probe whether static embeddings encode frame-selectional properties of verbs. At both the word and sentence level, we find that contextual embeddings from PLMs not only outperform non-contextual embeddings, but achieve astonishingly high accuracies on tasks across most alternation classes. Additionally, we find evidence that the middle-to-upper layers of PLMs achieve better performance on average than the lower layers across all probing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源