论文标题

近来的多个对象跟踪:文献综述

Multiple Object Tracking in Recent Times: A Literature Review

论文作者

Bashar, Mk, Islam, Samia, Hussain, Kashifa Kawaakib, Hasan, Md. Bakhtiar, Rahman, A. B. M. Ashikur, Kabir, Md. Hasanul

论文摘要

近年来,多个对象跟踪引起了研究人员的极大兴趣,并且它已成为计算机视觉中的趋势问题之一,尤其是随着自动驾驶的最新发展。 MOT是针对不同问题的关键视觉任务之一,例如拥挤的场景中的闭塞,相似的外观,小对象检测难度,ID切换等,以应对这些挑战,因为研究人员试图利用变压器的关注机制,与图形卷积神经网络的相互关系,与Simaine网络相比,对象的外观相似,也可以基于Sime Simple网络,他们也可以基于CON NOTICTICT CONTM CONTM INSMET IN NOTY IONS MATCONT IN NOWS MATCONT IONING IONING IONING IONING IOMING IONING IOMOY YOUY OYOY YOU YOUS。为了将这些零散的技术在雨伞下采用,我们研究了过去三年中发表的一百多篇论文,并试图提取近来研究人员更关注的技术来解决MOT的问题。我们已经征集了许多应用,可能性以及MOT如何与现实生活有关。我们的评论试图展示研究人员使用过时的技术的不同观点,并为潜在的研究人员提供了一些未来的方向。此外,我们在这篇评论中包括了流行的基准数据集和指标。

Multiple object tracking gained a lot of interest from researchers in recent years, and it has become one of the trending problems in computer vision, especially with the recent advancement of autonomous driving. MOT is one of the critical vision tasks for different issues like occlusion in crowded scenes, similar appearance, small object detection difficulty, ID switching, etc. To tackle these challenges, as researchers tried to utilize the attention mechanism of transformer, interrelation of tracklets with graph convolutional neural network, appearance similarity of objects in different frames with the siamese network, they also tried simple IOU matching based CNN network, motion prediction with LSTM. To take these scattered techniques under an umbrella, we have studied more than a hundred papers published over the last three years and have tried to extract the techniques that are more focused on by researchers in recent times to solve the problems of MOT. We have enlisted numerous applications, possibilities, and how MOT can be related to real life. Our review has tried to show the different perspectives of techniques that researchers used overtimes and give some future direction for the potential researchers. Moreover, we have included popular benchmark datasets and metrics in this review.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源