论文标题
非线性schrödinger方程的阈值解决方案的爆炸或增长
Blow-up or Grow-up for the threshold solutions to the nonlinear Schrödinger equation
论文作者
论文摘要
我们认为具有$ l^{2} $ - 超临界和$ h^{1} $的非线性schrödinger方程 - 亚临界功率类型非线性。 Duyckaerts,Roudenko和Campos,Farah和Roudenko研究了解决方案的全球动力学,其质量和能量与地面状态相同。在这些论文中,假定有限的方差显示有限的时间爆炸。在本文中,我们删除了有限变化的假设,并证明了爆炸或成长结果。
We consider the nonlinear Schrödinger equation with $L^{2}$-supercritical and $H^{1}$-subcritical power type nonlinearity. Duyckaerts and Roudenko and Campos, Farah, and Roudenko studied the global dynamics of the solutions with same mass and energy as that of the ground state. In these papers, finite variance is assumed to show the finite time blow-up. In the present paper, we remove the finite-variance assumption and prove a blow-up or grow-up result.