论文标题
热电性能的限制,有界传输分布
The Limits of Thermoelectric Performance with a Bounded Transport Distribution
论文作者
论文摘要
以最大化优异$ zt $,mahan and Sofo的热电(TE)形象最大化[Proc。纳特。学院。科学。美国93,7436(1996)]发现,最佳运输分布(TD)是三角洲的功能。但是,材料的TD似乎总是有限且不变。在这一观察结果的推动下,本研究的重点是得出什么是最佳有限的TD,该界限被确定为$ ZT $的盒车功能,并且是功率因数的重壳功能。从这些最佳的TDS上限$ ZT $,并获得了功率因数; $σ_ {\ rm max} t /κ_l$的最大$ zt $比例,其中$σ_ {\ rm max} $是td幅度,$κ_l$是晶格导热率。这些结果有助于建立对TE材料性能的实际上限,并提供目标TD,以指导乐队/散射工程策略。
With the goal of maximizing the thermoelectric (TE) figure of merit $ZT$, Mahan and Sofo [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)] found that the optimal transport distribution (TD) is a delta function. Materials, however, have TDs that appear to always be finite and non-diverging. Motivated by this observation, this study focuses on deriving what is the optimal bounded TD, which is determined to be a boxcar function for $ZT$ and a Heaviside function for power factor. From these optimal TDs upper limits on $ZT$ and power factor are obtained; the maximum $ZT$ scales with $Σ_{\rm max} T /κ_l$, where $Σ_{\rm max}$ is the TD magnitude and $κ_l$ is the lattice thermal conductivity. These results help establish practical upper limits on the performance of TE materials and provide target TDs to guide band/scattering engineering strategies.