论文标题
由布朗运动驱动的McKean-Vlasov SDES的明确欧拉方法
An explicit Euler method for McKean-Vlasov SDEs driven by fractional Brownian motion
论文作者
论文摘要
在本文中,我们建立了混乱的繁殖理论,并提出了欧拉·玛鲁亚山(Euler-Maruyama)方案,用于麦基恩·维拉索夫(McKean-Vlasov)随机微分方程,该方程是由分数布朗尼运动驱动的,hurst指数$ h \ in(0,1)$。同时,获得了Euler方法中错误的上限。证明了一个数值示例来验证理论结果。
In this paper, we establish the theory of chaos propagation and propose an Euler-Maruyama scheme for McKean-Vlasov stochastic differential equations driven by fractional Brownian motion with Hurst exponent $H \in (0,1)$. Meanwhile, upper bounds for errors in the Euler method is obtained. A numerical example is demonstrated to verify the theoretical results.