论文标题

由布朗运动驱动的McKean-Vlasov SDES的明确欧拉方法

An explicit Euler method for McKean-Vlasov SDEs driven by fractional Brownian motion

论文作者

He, Jie, Gao, Shuaibin, Zhan, Weijun, Guo, Qian

论文摘要

在本文中,我们建立了混乱的繁殖理论,并提出了欧拉·玛鲁亚山(Euler-Maruyama)方案,用于麦基恩·维拉索夫(McKean-Vlasov)随机微分方程,该方程是由分数布朗尼运动驱动的,hurst指数$ h \ in(0,1)$。同时,获得了Euler方法中错误的上限。证明了一个数值示例来验证理论结果。

In this paper, we establish the theory of chaos propagation and propose an Euler-Maruyama scheme for McKean-Vlasov stochastic differential equations driven by fractional Brownian motion with Hurst exponent $H \in (0,1)$. Meanwhile, upper bounds for errors in the Euler method is obtained. A numerical example is demonstrated to verify the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源