论文标题

双曲线结

Hyperbolic Knotoids

论文作者

Adams, Colin, Bonat, Alexandra, Chande, Maya, Chen, Joye, Jiang, Maxwell, Romrell, Zachary, Santiago, Daniel, Shapiro, Benjamin, Woodruff, Dora

论文摘要

在2010年,Turaev引入了结的变化,以结的嵌入方式,用两个端点的封闭间隔嵌入。各种各样的结已经扩展到结节。在这里,我们为球形和平面结的双曲线提供了定义。我们证明双曲线球体结的乘积是双曲线,并且体积添加。我们还确定了理性球形结的体积最少,并提供各种双曲线结。我们还包括球形和平面结的双曲线量表。

In 2010, Turaev introduced knotoids as a variation on knots that replaces the embedding of a circle with the embedding of a closed interval with two endpoints. A variety of knot invariants have been extended to knotoids. Here we provide definitions of hyperbolicity for both spherical and planar knotoids. We prove that the product of hyperbolic spherical knotoids is hyperbolic and the volumes add. We also determine the least volume of a rational spherical knotoid and provide various classes of hyperbolic knotoids. We also include tables of hyperbolic volumes for both spherical and planar knotoids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源