论文标题

政治IIT-Cini提交给Epic-Kitchens-100无监督的领域适应性挑战,以识别行动

PoliTO-IIT-CINI Submission to the EPIC-KITCHENS-100 Unsupervised Domain Adaptation Challenge for Action Recognition

论文作者

Planamente, Mirco, Goletto, Gabriele, Trivigno, Gabriele, Averta, Giuseppe, Caputo, Barbara

论文摘要

在本报告中,我们描述了我们提交给Epic-Kitchens-100无监督域适应(UDA)挑战的技术细节。为了应对UDA设置下存在的域移位,我们首先利用了最新的域概括(DG)技术,称为相对规范对齐(RNA)。其次,我们将这种方法扩展到无标记的目标数据上的工作,从而使模型更简单地以无监督的方式适应目标分布。为此,我们包括在UDA算法中,例如多级对抗对准和专心熵。通过分析挑战设置,我们注意到数据中存在二次同意转移,通常称为环境偏见。它是由存在不同环境(即厨房)引起的。为了处理这两个班次(环境和时间段),我们扩展了系统以执行多源多目标域的适应性。最后,我们在最终提案中采用了不同的模型来利用流行视频体系结构的潜力,并为整体改编介绍了两次损失。我们的提交(条目“ PLNET”)在排行榜上可见,并在“动词”中排名第二,并且在“名词”和“ Action”中都处于第三位。

In this report, we describe the technical details of our submission to the EPIC-Kitchens-100 Unsupervised Domain Adaptation (UDA) Challenge in Action Recognition. To tackle the domain-shift which exists under the UDA setting, we first exploited a recent Domain Generalization (DG) technique, called Relative Norm Alignment (RNA). Secondly, we extended this approach to work on unlabelled target data, enabling a simpler adaptation of the model to the target distribution in an unsupervised fashion. To this purpose, we included in our framework UDA algorithms, such as multi-level adversarial alignment and attentive entropy. By analyzing the challenge setting, we notice the presence of a secondary concurrence shift in the data, which is usually called environmental bias. It is caused by the existence of different environments, i.e., kitchens. To deal with these two shifts (environmental and temporal), we extended our system to perform Multi-Source Multi-Target Domain Adaptation. Finally, we employed distinct models in our final proposal to leverage the potential of popular video architectures, and we introduced two more losses for the ensemble adaptation. Our submission (entry 'plnet') is visible on the leaderboard and ranked in 2nd position for 'verb', and in 3rd position for both 'noun' and 'action'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源