论文标题
超越普兰克四世。关于CMB分析中的端到端模拟 - 贝叶斯与频繁统计
BeyondPlanck IV. On end-to-end simulations in CMB analysis -- Bayesian versus frequentist statistics
论文作者
论文摘要
端到端模拟在分析任何高敏化CMB实验中起关键作用,从而提供了高保真的系统错误传播能力,该功能无与伦比。在本文中,我们解决了有关此类模拟的一个重要问题,即如何根据天空模型和仪器参数定义输入。这些可以将其视为从数据得出的约束实现,或者作为与数据独立的随机实现。我们分别将其称为贝叶斯和频繁的模拟。我们表明,这两种选项导致与贝叶斯模拟相反的频繁模拟,有效地包括宇宙差异,但有效地包括宇宙差异,但排除了非线性脱发的特定于实现的相关性。因此,它们从根本上量化了不同类型的不确定性,我们认为它们也具有不同和互补的科学用途,即使这种二分法不是绝对的。在Plyplanck Beyond之前,大多数管道都使用了受约束和随机输入的混合,并且在所有应用程序中都使用了相同的混合模拟,即使对此的统计理由并不总是很明显。 Beyondplanck代表了能够生成两种模拟的第一个端到端CMB仿真框架,这些新功能使该主题成为了最前沿的。贝叶斯超越蓬勃的模拟及其用途在一系列伴侣论文中得到了广泛的描述。在本文中,我们考虑了相应的频繁模拟的一个重要应用,即代码验证。也就是说,我们生成一组具有已知输入的1年LFI 30 GHz频繁模拟的模拟,并使用它们来验证核心的低水平超越Planck算法;增益估计,相关的噪声估计和地图制作。
End-to-end simulations play a key role in the analysis of any high-sensitivity CMB experiment, providing high-fidelity systematic error propagation capabilities unmatched by any other means. In this paper, we address an important issue regarding such simulations, namely how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained realization derived from the data, or as a random realization independent from the data. We refer to these as Bayesian and frequentist simulations, respectively. We show that the two options lead to significantly different correlation structures, as frequentist simulations, contrary to Bayesian simulations, effectively include cosmic variance, but exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify fundamentally different types of uncertainties, and we argue that they therefore also have different and complementary scientific uses, even if this dichotomy is not absolute. Before BeyondPlanck, most pipelines have used a mix of constrained and random inputs, and used the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BeyondPlanck represents the first end-to-end CMB simulation framework that is able to generate both types of simulations, and these new capabilities have brought this topic to the forefront. The Bayesian BeyondPlanck simulations and their uses are described extensively in a suite of companion papers. In this paper we consider one important applications of the corresponding frequentist simulations, namely code validation. That is, we generate a set of 1-year LFI 30 GHz frequentist simulations with known inputs, and use these to validate the core low-level BeyondPlanck algorithms; gain estimation, correlated noise estimation, and mapmaking.