论文标题
部分可观测时空混沌系统的无模型预测
A spinwave Ising machine
论文作者
论文摘要
我们展示了一种基于自旋波的时间 - 式式伊辛机器(游泳),该机器使用5 $ $ m厚的Yttrium Iron Garnet(YIG)膜和现成的微波炉组件实施。人工iSing旋转由34--68 ns长3.125 GHz Spinwave RF脉冲及其相位敏感的微波放大器进行二进制。得益于非常低的Spinwave组速度,7毫米长的Yig WaveGuide可以容纳8旋旋转最大问题,并以少于4 $μ$ s的速度解决,而仅消耗7 $μ$ J。使用实时示波器,我们遵循每种自旋的时间演变,因为游泳可最大程度地减少其能量,并找到旋转状态的均匀和域propagation样切换。游泳有可能实现实质性的微型化,可扩展性,速度和降低的功耗,并可能成为具有高性能的商业可行优化问题解决者的多功能平台。
We demonstrate a spin-wave-based time-multiplexed Ising Machine (SWIM), implemented using a 5 $μ$m thick Yttrium Iron Garnet (YIG) film and off-the-shelf microwave components. The artificial Ising spins consist of 34--68 ns long 3.125 GHz spinwave RF pulses with their phase binarized using a phase-sensitive microwave amplifier. Thanks to the very low spinwave group velocity, the 7 mm long YIG waveguide can host an 8-spin MAX-CUT problem and solve it in less than 4 $μ$s while consuming only 7 $μ$J. Using a real-time oscilloscope, we follow the temporal evolution of each spin as the SWIM minimizes its energy and find both uniform and domain-propagation-like switching of the spin state. The SWIM has the potential for substantial further miniaturization, scalability, speed, and reduced power consumption, and may become a versatile platform for commercially feasible optimization problem solvers with high performance.