论文标题
部分可观测时空混沌系统的无模型预测
Pathology Synthesis of 3D-Consistent Cardiac MR Images using 2D VAEs and GANs
论文作者
论文摘要
我们提出了一种合成具有合理心脏病和现实外观的心脏磁共振(MR)图像的方法,目的是生成标记的数据以应用监督深度学习(DL)训练。图像合成由标签变形和标签到图像翻译任务组成。前者是通过VAE模型中的潜在空间插值来实现的,而后者是通过标签条件GAN模型完成的。我们在训练有素的VAE模型的潜在空间中设计了三种标记操作的方法; i)\ textbf {内部对象合成},目的是插入主题的中间切片以增加平面分辨率,ii)\ textbf {textbf {supsubject {Inter-subject synthesis},旨在插入几何形状和与不同的scanner venters in II II II II II II II II II II II II II II II II II II II II II II II {合成一系列具有所需心脏病特征的伪病理合成受试者。此外,我们建议在重建之前对VAE的潜在空间中的2D切片之间的关系建模,以生成3D一致的受试者,从而堆叠2D片段。我们证明,这种方法可以提供一种解决方案,以使心脏MR图像的可用数据库多样化,并为开发基于概括的DL的图像分析算法铺平道路。我们在增强方案中定量评估合成数据的质量,以实现对多供应商和多疾病数据的概括性和鲁棒性,以进行图像分割。我们的代码可在https://github.com/sinaamirrajab/cardiacpathologysynthesis中找到。
We propose a method for synthesizing cardiac magnetic resonance (MR) images with plausible heart pathologies and realistic appearances for the purpose of generating labeled data for the application of supervised deep-learning (DL) training. The image synthesis consists of label deformation and label-to-image translation tasks. The former is achieved via latent space interpolation in a VAE model, while the latter is accomplished via a label-conditional GAN model. We devise three approaches for label manipulation in the latent space of the trained VAE model; i) \textbf{intra-subject synthesis} aiming to interpolate the intermediate slices of a subject to increase the through-plane resolution, ii) \textbf{inter-subject synthesis} aiming to interpolate the geometry and appearance of intermediate images between two dissimilar subjects acquired with different scanner vendors, and iii) \textbf{pathology synthesis} aiming to synthesize a series of pseudo-pathological synthetic subjects with characteristics of a desired heart disease. Furthermore, we propose to model the relationship between 2D slices in the latent space of the VAE prior to reconstruction for generating 3D-consistent subjects from stacking up 2D slice-by-slice generations. We demonstrate that such an approach could provide a solution to diversify and enrich an available database of cardiac MR images and to pave the way for the development of generalizable DL-based image analysis algorithms. We quantitatively evaluate the quality of the synthesized data in an augmentation scenario to achieve generalization and robustness to multi-vendor and multi-disease data for image segmentation. Our code is available at https://github.com/sinaamirrajab/CardiacPathologySynthesis.