论文标题
多元透明的标签改进网络具有依赖性结构,用于联合意图检测和插槽填充
Multi-grained Label Refinement Network with Dependency Structures for Joint Intent Detection and Slot Filling
论文作者
论文摘要
插槽填充和意图检测是自然语言理解领域的两个基本任务。由于这两项任务之间存在很强的相关性,因此以前的研究努力通过多任务学习或设计特征交互模块来建模它们,以提高每个任务的性能。但是,现有的方法都没有考虑句子的结构信息与两个任务的标签语义之间的相关性。话语的意图和语义成分取决于句子的句法元素。在本文中,我们研究了一个多透明的标签改进网络,该网络利用依赖性结构和标签语义嵌入。考虑到增强句法表示,我们将句子的依赖性结构介绍到我们的模型中。为了捕获句法信息和任务标签之间的语义依赖性,我们将特定于任务的特征与相应的标签嵌入通过注意机制相结合。实验结果表明,我们的模型在两个公共数据集上实现了竞争性能。
Slot filling and intent detection are two fundamental tasks in the field of natural language understanding. Due to the strong correlation between these two tasks, previous studies make efforts on modeling them with multi-task learning or designing feature interaction modules to improve the performance of each task. However, none of the existing approaches consider the relevance between the structural information of sentences and the label semantics of two tasks. The intent and semantic components of a utterance are dependent on the syntactic elements of a sentence. In this paper, we investigate a multi-grained label refinement network, which utilizes dependency structures and label semantic embeddings. Considering to enhance syntactic representations, we introduce the dependency structures of sentences into our model by graph attention layer. To capture the semantic dependency between the syntactic information and task labels, we combine the task specific features with corresponding label embeddings by attention mechanism. The experimental results demonstrate that our model achieves the competitive performance on two public datasets.