论文标题

MOS2 FET中的不对称接触缩放和测量

Asymmetrical contact scaling and measurements in MoS2 FETs

论文作者

Cheng, Zhihui, Backman, Jonathan, Zhang, Huairuo, Abuzaid, Hattan, Li, Guoqing, Yu, Yifei, Cao, Linyou, Davydov, Albert V., Luisier, Mathieu, Richter, Curt A., Franklin, Aaron D.

论文摘要

二维(2D)材料由于其原子较薄的性质而承受短通道效应,因此可以更好地可扩展性。设备缩放是降低所有设备尺寸以在某个芯片区域中实现较高设备密度的过程。对于基于2D材料的晶体管,必须研究通道和接触可伸缩性。已经对2D材料的通道可伸缩性进行了彻底的研究,从而证实了它们对短通道效应的弹性。但是,有关接触可伸缩性的系统研究仍然很少,并且在2D FET中对接触缩放的当前理解是不一致且过于简化的。在这里,我们结合了物理缩放的接触和不对称接触测量,以研究2D场效应晶体管(FET)中的接触缩放行为。不对称接触测量值直接将电子注入与不同的接触长度进行比较,同时使用完全相同的通道,从而消除了通道到通道的变化。与接触长度较长的设备相比,具有较短接触长度的设备(缩放触点)显示出较大的变化,在高排水源电压下较小的排水电流,以及显示早期饱和度和负差分电阻的较高机会。量子传输模拟表明,Ni-MOS2触点的转移长度可以短达5 nm。我们的结果表明,在源接触处的电荷注入与排水侧的注入不同:缩放的源接触可以限制排水电流,而缩放的排水接触则不能。此外,我们清楚地确定了传递长度取决于金属2D界面的质量。此处提出的不对称接触测量将使您能够进一步了解各个界面处的接触缩放行为。

Two-dimensional (2D) materials have great potential for use in future electronics due to their atomically thin nature which withstands short channel effects and thus enables better scalability. Device scaling is the process of reducing all device dimensions to achieve higher device density in a certain chip area. For 2D materials-based transistors, both the channel and contact scalability must be investigated. The channel scalability of 2D materials has been thoroughly investigated, confirming their resilience to short-channel effects. However, systematic studies on contact scalability remain rare and the current understanding of contact scaling in 2D FET is inconsistent and oversimplified. Here we combine physically scaled contacts and asymmetrical contact measurements to investigate the contact scaling behavior in 2D field-effect transistors (FETs). The asymmetrical contact measurements directly compare electron injection with different contact lengths while using the exact same channel, eliminating channel-to-channel variations. Compared to devices with long contact lengths, devices with short contact lengths (scaled contacts) exhibit larger variation, smaller drain currents at high drain-source voltages, and a higher chance of showing early saturation and negative differential resistance. Quantum transport simulations show that the transfer length of Ni-MoS2 contacts can be as short as 5 nm. Our results suggest that charge injection at the source contact is different from injection at the drain side: scaled source contacts can limit the drain current, whereas scaled drain contacts cannot. Furthermore, we clearly identified that the transfer length depends on the quality of the metal-2D interface. The asymmetrical contact measurements proposed here will enable further understanding of contact scaling behavior at various interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源