论文标题

基于CTC的ASR,具有电话条件蒙版LM

Non-autoregressive Error Correction for CTC-based ASR with Phone-conditioned Masked LM

论文作者

Futami, Hayato, Inaguma, Hirofumi, Ueno, Sei, Mimura, Masato, Sakai, Shinsuke, Kawahara, Tatsuya

论文摘要

连接派时间分类(CTC)的模型在自动语音识别(ASR)方面具有吸引力,因为它们的非自动性性质。为了利用仅文本数据,语言模型(LM)集成方法(例如撤销和浅融合)已被广泛用于CTC。但是,由于需要降低推理速度,因此他们失去了CTC的非自动性性本质。在这项研究中,我们提出了一种使用电话条件的蒙版LM(PC-MLM)的错误校正方法。在提出的方法中,掩盖了来自CTC的贪婪解码输出中的较不自信的单词令牌。然后,PC-MLM预测这些蒙版的单词令牌给出了由CTC补充的未掩盖单词和电话。我们将其进一步扩展到已删除的PC-MLM,以解决插入错误。由于CTC和PC-MLM均为非自动回旋模型,因此该方法可以快速LM集成。在域适应设置中对自发日本(CSJ)和TED-LIUM2语料库进行的实验评估表明,我们所提出的方法在推理速度方面优于重新逆转和浅融合,并且在CSJ上的识别准确性方面。

Connectionist temporal classification (CTC) -based models are attractive in automatic speech recognition (ASR) because of their non-autoregressive nature. To take advantage of text-only data, language model (LM) integration approaches such as rescoring and shallow fusion have been widely used for CTC. However, they lose CTC's non-autoregressive nature because of the need for beam search, which slows down the inference speed. In this study, we propose an error correction method with phone-conditioned masked LM (PC-MLM). In the proposed method, less confident word tokens in a greedy decoded output from CTC are masked. PC-MLM then predicts these masked word tokens given unmasked words and phones supplementally predicted from CTC. We further extend it to Deletable PC-MLM in order to address insertion errors. Since both CTC and PC-MLM are non-autoregressive models, the method enables fast LM integration. Experimental evaluations on the Corpus of Spontaneous Japanese (CSJ) and TED-LIUM2 in domain adaptation setting shows that our proposed method outperformed rescoring and shallow fusion in terms of inference speed, and also in terms of recognition accuracy on CSJ.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源