论文标题
基于CTC的ASR,具有电话条件蒙版LM
Non-autoregressive Error Correction for CTC-based ASR with Phone-conditioned Masked LM
论文作者
论文摘要
连接派时间分类(CTC)的模型在自动语音识别(ASR)方面具有吸引力,因为它们的非自动性性质。为了利用仅文本数据,语言模型(LM)集成方法(例如撤销和浅融合)已被广泛用于CTC。但是,由于需要降低推理速度,因此他们失去了CTC的非自动性性本质。在这项研究中,我们提出了一种使用电话条件的蒙版LM(PC-MLM)的错误校正方法。在提出的方法中,掩盖了来自CTC的贪婪解码输出中的较不自信的单词令牌。然后,PC-MLM预测这些蒙版的单词令牌给出了由CTC补充的未掩盖单词和电话。我们将其进一步扩展到已删除的PC-MLM,以解决插入错误。由于CTC和PC-MLM均为非自动回旋模型,因此该方法可以快速LM集成。在域适应设置中对自发日本(CSJ)和TED-LIUM2语料库进行的实验评估表明,我们所提出的方法在推理速度方面优于重新逆转和浅融合,并且在CSJ上的识别准确性方面。
Connectionist temporal classification (CTC) -based models are attractive in automatic speech recognition (ASR) because of their non-autoregressive nature. To take advantage of text-only data, language model (LM) integration approaches such as rescoring and shallow fusion have been widely used for CTC. However, they lose CTC's non-autoregressive nature because of the need for beam search, which slows down the inference speed. In this study, we propose an error correction method with phone-conditioned masked LM (PC-MLM). In the proposed method, less confident word tokens in a greedy decoded output from CTC are masked. PC-MLM then predicts these masked word tokens given unmasked words and phones supplementally predicted from CTC. We further extend it to Deletable PC-MLM in order to address insertion errors. Since both CTC and PC-MLM are non-autoregressive models, the method enables fast LM integration. Experimental evaluations on the Corpus of Spontaneous Japanese (CSJ) and TED-LIUM2 in domain adaptation setting shows that our proposed method outperformed rescoring and shallow fusion in terms of inference speed, and also in terms of recognition accuracy on CSJ.