论文标题

PerfectOid签名,完美的Hilbert-Kunz多重性,并应用于本地基本组

Perfectoid signature, perfectoid Hilbert-Kunz multiplicity, and an application to local fundamental groups

论文作者

Cai, Hanlin, Lee, Seungsu, Ma, Linquan, Schwede, Karl, Tucker, Kevin

论文摘要

我们通过利用Bhatt-Scholze和Faltings的正常长度(在Gabber-ramero的工作中开发),通过利用Bhatt-Scholze和Faltings的Perfectoidization函数来定义$ f $ signature和Hilbert-Kunz多重性的(完美的)混合特性版本。我们表明,这些定义与同等特征$ p> 0 $的经典理论一致。我们证明,只有当它的完美体签名或完美的Hilbert-kunz多重性是1,并且我们证明Perfectoid Hilbert-Kunz多重性表征BCM闭合和扩展以及$ M $ $ $ $ $ $ - $ $ - $ - $ $ - 主要理想。我们证明,完美的签名检测到BCM的定型性,并在准图中类似于$ f $ - 签名或归一化体积。结果,我们证明了BCM规范环具有有限的本地étale基本组,并且在其除数阶级群体中也有限扭转。最后,我们还定义了相对理性签名的混合特征版本,并表明它的特征是BCM理性的概念。

We define a (perfectoid) mixed characteristic version of $F$-signature and Hilbert-Kunz multiplicity by utilizing the perfectoidization functor of Bhatt-Scholze and Faltings' normalized length (also developed in the work of Gabber-Ramero). We show that these definitions coincide with the classical theory in equal characteristic $p > 0$. We prove that a ring is regular if and only if either its perfectoid signature or perfectoid Hilbert-Kunz multiplicity is 1 and we show that perfectoid Hilbert-Kunz multiplicity characterizes BCM closure and extended plus closure of $m$-primary ideals. We demonstrate that perfectoid signature detects BCM-regularity and transforms similarly to $F$-signature or normalized volume under quasi-étale maps. As a consequence, we prove that BCM-regular rings have finite local étale fundamental group and also finite torsion part of their divisor class groups. Finally, we also define a mixed characteristic version of relative rational signature, and show it characterizes BCM-rational singularities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源