论文标题

$ k $的模块结构 - 多项式戒指的理论

Module structure of the $K$-theory of polynomial-like rings

论文作者

Haesemayer, Christian, Weibel, Charles

论文摘要

假设$γ$是一个晶格的下monoid,不包含一条线。在本说明中,我们在Monoid代数$ r [γ] $上使用天然$γ$分类来证明有关相对$ k $ - 理论$ k(r [γ],r)$的结构性结果。当$ r $包含一个字段时,我们证明了射线索引的分解为$γ$,而witt vectors $ r $的兼容动作对于每种$ \ mathbf n $ - $γ$。在特征零中,Witt向量还针对截断设置$γ$还有一项动作。最后,我们将其应用于$ k _*(r [x_1,...,...,x_n])$ j。\,戴维斯提出的$。

Suppose $Γ$ is a submonoid of a lattice, not containing a line. In this note, we use the natural $Γ$-grading on the monoid algebra $R[Γ]$ to prove structural results about the relative $K$-theory $K(R[Γ], R)$. When $R$ contains a field, we prove a decomposition indexed by the rays in $Γ$, and a compatible action by the Witt vectors of $R$ for each $\mathbf N$-grading of $Γ$. In characteristic zero, there is additionally an action by Witt vectors for the truncation set $Γ$. Finally, we apply this to get a ray-like description of $K_*(R[x_1,...,x_n])$ proposed by J.\,Davis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源