论文标题

结构化负面性:基于结构物理近似的物理上可实现的纠缠量

Structured Negativity: A physically realizable measure of entanglement based on structural physical approximation

论文作者

Kumari, Anu, Adhikari, Satyabrata

论文摘要

纠缠的量化是量子信息理论中最重要的问题之一。在这项工作中,我们将通过定义任何任意尺寸双分部分系统$ρ$的可实现的纠缠措施来研究此问题,我们将其称为结构性负性$(n_s(ρ))$。我们已经表明,引入的度量满足有效纠缠单调的性质。我们还建立了一种不平等,将负面影响与结构化的消极行为相关。对于$ d \ otimes d $维态,我们从这项工作中获得的结果猜测,当部分转接建矩阵的负特征值等于$ \ frac {d(d-1)} {2}} $时,消极的结果与结构化的负相吻合。此外,我们证明了结构化的消极情绪不仅可以在实验室中实现,而且还可以更好地衡量纠缠,而不是消极情绪。在少数情况下,我们获得该结构的负相比,比Albeverio [Phys。莱特牧师。 \ textbf {95},040504(2005)]。

Quantification of entanglement is one of the most important problem in quantum information theory. In this work, we will study this problem by defining a physically realizable measure of entanglement for any arbitrary dimensional bipartite system $ρ$, which we named as structured negativity $(N_S(ρ))$. We have shown that the introduced measure satisfies the properties of a valid entanglement monotone. We also have established an inequality that relate negativity and the structured negativity. For $d\otimes d$ dimensional state, we conjecture from the result obtained in this work that negativity coincide with the structured negativity when the number of negative eigenvalues of the partially transposed matrix is equal to $\frac{d(d-1)}{2}$. Moreover, we proved that the structured negativity not only implementable in the laboratory but also a better measure of entanglement in comparison to negativity. In few cases, we obtain that structure negativity gives better result than the lower bound of the concurrence obtained by Albeverio [Phys. Rev. Lett. \textbf{95}, 040504 (2005)].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源