论文标题

合成光圈声纳图像的直方图层

Histogram Layers for Synthetic Aperture Sonar Imagery

论文作者

Peeples, Joshua, Zare, Alina, Dale, Jeffrey, Keller, James

论文摘要

合成孔径声纳(SAS)图像对于多种应用至关重要,包括目标识别和环境分割。深度学习模型在SAS分析中取得了很大的成功。但是,这些方法提取的功能可能不适合捕获某些纹理信息。为了解决这个问题,我们提出了直方图层在SAS图像上的新应用。在深度学习模型中添加直方图层,通过在合成和现实世界数据集上合并统计纹理信息,从而提高了性能。

Synthetic aperture sonar (SAS) imagery is crucial for several applications, including target recognition and environmental segmentation. Deep learning models have led to much success in SAS analysis; however, the features extracted by these approaches may not be suitable for capturing certain textural information. To address this problem, we present a novel application of histogram layers on SAS imagery. The addition of histogram layer(s) within the deep learning models improved performance by incorporating statistical texture information on both synthetic and real-world datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源