论文标题
T2LR-NET:一个展开的网络学习转变的张量低级别先验的动态MR图像重建
T2LR-Net: An unrolling network learning transformed tensor low-rank prior for dynamic MR image reconstruction
论文作者
论文摘要
张量较低的先验在动态MR重建中引起了很大的关注。张量低级别方法可保留数据的固有高维结构,从而改善了内在的低级别特征的提取和利用。但是,大多数当前方法仍然仅限于在图像域或预定义的变换域中使用低级别结构。通过手动努力设计一种适应动态MRI重建的最佳转换本质上是具有挑战性的。在本文中,我们提出了一个深层展开的网络,该网络利用卷积神经网络(CNN)自适应地学习了转换的域,以利用张量的低级别先验。在有监督的机制下,张量低级别结构域的学习直接由重建精度引导。具体而言,我们将传统的T-SVD推广到基于任意高维统一转换的转换版本,并引入一种新颖的单一转换张量核定常(UTNN)。随后,我们提出了一种基于UTNN的动态MRI重建模型,并使用ADMM设计了有效的迭代优化算法,该算法最终将其展开到所提出的T2LR-NET中。对两个动态心脏MRI数据集进行的实验表明,T2LR-NET优于基于最新的优化和基于网络的最先进的方法。
The tensor low-rank prior has attracted considerable attention in dynamic MR reconstruction. Tensor low-rank methods preserve the inherent high-dimensional structure of data, allowing for improved extraction and utilization of intrinsic low-rank characteristics. However, most current methods are still confined to utilizing low-rank structures either in the image domain or predefined transformed domains. Designing an optimal transformation adaptable to dynamic MRI reconstruction through manual efforts is inherently challenging. In this paper, we propose a deep unrolling network that utilizes the convolutional neural network (CNN) to adaptively learn the transformed domain for leveraging tensor low-rank priors. Under the supervised mechanism, the learning of the tensor low-rank domain is directly guided by the reconstruction accuracy. Specifically, we generalize the traditional t-SVD to a transformed version based on arbitrary high-dimensional unitary transformations and introduce a novel unitary transformed tensor nuclear norm (UTNN). Subsequently, we present a dynamic MRI reconstruction model based on UTNN and devise an efficient iterative optimization algorithm using ADMM, which is finally unfolded into the proposed T2LR-Net. Experiments on two dynamic cardiac MRI datasets demonstrate that T2LR-Net outperforms the state-of-the-art optimization-based and unrolling network-based methods.