论文标题
公制图上的非线性klein-gordon方程:建模无反射传输
The nonlinear Klein-Gordon equation on metric graphs: Modeling reflectionless transmission of the kink soliton
论文作者
论文摘要
在本文中,我们考虑了带有树半无限键的度量星图上的非线性klein-gordon方程。在分支点,我们放置了两种类型的顶点边界条件:重量连续性和波功能的衍生物作为广义的Kirchhoff规则。我们解决了满足顶点边界条件和能量,动量保护定律的方程。我们还显示了扭结溶液解决方案的无反射传播,绘制反射系数并扩展到其他拓扑。
In this paper we consider the nonlinear Klein-Gordon equation on the metric star graph with tree semi-infinite bonds. At the branched point we put two types of vertex boundary conditions: the weight continuity and the condition for derivatives of wave functions as the generalized Kirchhoff rule. We solve this equation satisfying vertex boundary conditions and the energy, momentum conservation laws. We also show reflectionsless propagations of the kink soliton solution, plot the reflection coefficient and extend to other topologies.