论文标题
时间分数扩散方程的耦合系统的初始有限价值问题
Initial-boundary value problems for coupled systems of time-fractional diffusion equations
论文作者
论文摘要
本文介绍了适度耦合的时间分解扩散方程系统的初始值问题。定义温和的解决方案,我们建立了基本的独特存在,有限的平滑性能和解决方案的长期渐近行为,这些溶液主要继承了单个方程的溶液。由于耦合效果,我们还通过单点观察溶液的单个分量来确定所有分数顺序,从而获得了反问题的唯一性。
This article deals with the initial-boundary value problem for a moderately coupled system of time-fractional diffusion equations. Defining the mild solution, we establish fundamental unique existence, limited smoothing property and long-time asymptotic behavior of the solution, which mostly inherit those of a single equation. Owing to the coupling effect, we also obtain the uniqueness for an inverse problem on determining all the fractional orders by the single point observation of a single component of the solution.