论文标题

时间分数扩散方程的耦合系统的初始有限价值问题

Initial-boundary value problems for coupled systems of time-fractional diffusion equations

论文作者

Li, Zhiyuan, Huang, Xinchi, Liu, Yikan

论文摘要

本文介绍了适度耦合的时间分解扩散方程系统的初始值问题。定义温和的解决方案,我们建立了基本的独特存在,有限的平滑性能和解决方案的长期渐近行为,这些溶液主要继承了单个方程的溶液。由于耦合效果,我们还通过单点观察溶液的单个分量来确定所有分数顺序,从而获得了反问题的唯一性。

This article deals with the initial-boundary value problem for a moderately coupled system of time-fractional diffusion equations. Defining the mild solution, we establish fundamental unique existence, limited smoothing property and long-time asymptotic behavior of the solution, which mostly inherit those of a single equation. Owing to the coupling effect, we also obtain the uniqueness for an inverse problem on determining all the fractional orders by the single point observation of a single component of the solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源