论文标题
使用投票方案估算F波占主导频率
Estimation of f-wave Dominant Frequency Using a Voting Scheme
论文作者
论文摘要
简介:心房颤动(AF)是最常见的心律失常,其特征是ECG中存在纤颤波(F波)。我们介绍了一个投票计划,以估计F波的主要心房频率(DAF)。方法:我们分析了从弗吉尼亚大学AF数据库获得的一部分Holter记录的子集。 100个带有手动注释的AF事件的Holter记录,总共363次AF事件持续了超过1分钟。使用四个不同的模板减法(TS)算法提取F波,并根据每个AF事件的第一个1分钟窗口估算DAF。使用了随机的森林分类器。我们假设更好地提取F波意味着使用DAF作为RF模型的单个输入特征更好地提取AF/NON-AF分类。结果:按AF/NON-AF分类表示的测试集的性能是计算DAF计算出的三种最佳表现提取方法时最好的。在投票方案中,使用这三种算法,获得的AUC = 0.60和DAFS的分类器大多扩散在6 Hz左右,5.66(4.83-7.47)。结论:这项研究有两个新的贡献:(1)一种评估F波提取算法性能的方法,以及(2)改进DAF估计的投票方案。
Introduction: Atrial fibrillation (AF) is the most common heart arrhythmia, characterized by the presence of fibrillatory waves (f-waves) in the ECG. We introduce a voting scheme to estimate the dominant atrial frequency (DAF) of f-waves. Methods: We analysed a subset of Holter recordings obtained from the University of Virginia AF Database. 100 Holter recordings with manually annotated AF events, resulting in a total 363 AF events lasting more than 1 min. The f-waves were extracted using four different template subtraction (TS) algorithms and the DAF was estimated from the first 1-min window of each AF event. A random forest classifier was used. We hypothesized that better extraction of the f-wave meant better AF/non-AF classification using the DAF as the single input feature of the RF model. Results: Performance on the test set, expressed in terms of AF/non-AF classification, was the best when the DAF was computed computed the three best-performing extraction methods. Using these three algorithms in a voting scheme, the classifier obtained AUC=0.60 and the DAFs were mostly spread around 6 Hz, 5.66 (4.83-7.47). Conclusions: This study has two novel contributions: (1) a method for assessing the performance of f-wave extraction algorithms, and (2) a voting scheme for improved DAF estimation.