论文标题
对黑洞散射中挠度角的自力校正:标量电荷玩具模型
Self-force correction to the deflection angle in black-hole scattering: a scalar charge toy model
论文作者
论文摘要
使用自力方法,我们考虑了带有标量电荷$ q $ Q $ s schwarzschild黑洞的尖粒子的双曲型散射。对于给定的初始速度和冲击参数,标量场的反反应将散射角度修改为$ \ propto \! Q^2 $,我们为大量轨道样本(忽略了引力自力)进行数值计算。我们的结果探测了强场和野外赛车场景,在后一种情况下,我们与辛科夫斯基(Minkowskian)的表情达成了很好的协议。标量场自力与四速度的分量有一个分量,该分量将粒子的质量与标量场能量交换,我们还将这种质量交换计算为沿轨道的函数。我们为散射角(就沿轨道的某些积分而言)得出的表达式可用于获得重力自力校正,以较大质量比的二进制黑洞的物理问题中的角度。我们讨论实现此目标所需的剩余步骤。
Using self-force methods, we consider the hyperbolic-type scattering of a pointlike particle carrying a scalar charge $Q$ off a Schwarzschild black hole. For given initial velocity and impact parameter, back-reaction from the scalar field modifies the scattering angle by an amount $\propto\! Q^2$, which we calculate numerically for a large sample of orbits (neglecting the gravitational self-force). Our results probe both strong-field and field-weak scenarios, and in the latter case we find a good agreement with post-Minkowskian expressions. The scalar-field self-force has a component tangent to the four-velocity that exchanges particle's mass with scalar-field energy, and we also compute this mass exchange as a function along the orbit. The expressions we derive for the scattering angle (in terms of certain integrals of the self-force along the orbit) can be used to obtain the gravitational self-force correction to the angle in the physical problem of a binary black hole with a large mass ratio. We discuss the remaining steps necessary to achieve this goal.