论文标题

通过模拟帕克风轮廓来限制行星质量损失率

Constraining planetary mass-loss rates by simulating Parker wind profiles with Cloudy

论文作者

Linssen, Dion, Oklopčić, Antonija, MacLeod, Morgan

论文摘要

基于Parker-wind密度和速度曲线的系外行星大气模型是拟合光谱观测的常见选择,可以追踪行星大气逃生。使用这些模型推断大气特性通常会导致温度和质量损失速率之间的变性,从而在任何一个参数上提供弱约束。我们提出了一个框架,可以通过对预期的热圈温度放置更严格的限制来部分解决这种堕落。我们在迭代方案中使用光电离代码的云层来计算一维派克风模型的网格的温度结构,包括辐射加热/冷却的效果以及流体动力效应(扩展冷却和热对流)。我们通过将模拟的模型在HE 10830 $Å$Å$形成区域中的模拟温度进行比较与创建模型中假定的温度相比,通过识别不符合自吻的模型来限制参数空间。我们在基于HD 209458 b的模型上演示了此过程。通过研究以假定温度在4000至12000 K之间的Parker Wind模型,以及$ 10^{8} $和$ 10^{11} $ G S $^{ - 1} $之间的质量损失率,我们能够排除此参数空间的很大一部分。此外,我们将模型符合以前的观察数据,并结合两个约束,以找到$ t = 8200^{+1200} _ { - 1100} $ K的首选热层温度,$ \ dot {m} = 10^{9.84^{+0.24^{+0.24^{$ \ dot {m}固定的大气组成和恒星风的无气压限制。使用相同的步骤,我们限制了黄蜂69 B,WASP-52 B,HAT-P-11 B,HAT-P-11 B,HAT-P-12 B和WASP-107 B的温度和质量损失率。

Models of exoplanet atmospheres based on Parker-wind density and velocity profiles are a common choice in fitting spectroscopic observations tracing planetary atmospheric escape. Inferring atmospheric properties using these models often results in a degeneracy between the temperature and the mass-loss rate, and thus provides weak constraints on either parameter. We present a framework that can partially resolve this degeneracy by placing more stringent constraints on the expected thermospheric temperature. We use the photoionization code Cloudy within an iterative scheme to compute the temperature structure of a grid of 1D Parker wind models, including the effects of radiative heating/cooling, as well as the hydrodynamic effects (expansion cooling and heat advection). We constrain the parameter space by identifying models that are not self-consistent through a comparison of the simulated temperature in the He 10830 $Å$ line-forming region to the temperature assumed in creating the models. We demonstrate this procedure on models based on HD 209458 b. By investigating the Parker wind models with an assumed temperature between 4000 and 12000 K, and a mass-loss rate between $10^{8}$ and $10^{11}$ g s$^{-1}$, we are able to rule out a large portion of this parameter space. Furthermore, we fit the models to previous observational data and combine both constraints to find a preferred thermospheric temperature of $T=8200^{+1200}_{-1100}$ K and a mass-loss rate of $\dot{M}=10^{9.84^{+0.24}_{-0.27}}$ g s$^{-1}$ assuming a fixed atmospheric composition and no gas pressure confinement by the stellar wind. Using the same procedure, we constrain the temperatures and mass-loss rates of WASP-69 b, WASP-52 b, HAT-P-11 b, HAT-P-18 b and WASP-107 b.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源