论文标题
暗物质光环的Einasto模型
The Einasto model for dark matter haloes
论文作者
论文摘要
上下文:Einasto模型已成为描述暗物质光环的密度曲线的最受欢迎的模型之一。关于Einasto模型的动态结构的全面研究相对较少,主要是因为只能通过分析来计算有限的属性。目的:我们希望在整个模型参数空间上系统地研究Einasto模型家族的光度和动力学结构。方法:我们使用SPHECOW代码探索Einasto模型的属性。我们系统地研究了最重要的属性如何随着Einasto索引$ n $的函数而变化。我们考虑了具有Osipkov-Merritt轨道结构的各向同性模型和径向的各向异性模型。结果:我们发现,所有具有$ n <\ tfrac12 $的Einasto模型都具有正式的各向同性或Osipkov-Merritt分布函数,在相位空间的某些部分中为负,因此无法得到此类轨道结构的支持。另一方面,只要各向异性半径大于临界值,所有具有$ n $的较大型号都可以由各向同性轨道结构或Osipkov-Merritt各向异性支持。这种关键的各向异性半径是$ n $的降低功能,表明较少的集中模型允许更大程度的径向各向异性。结论:对星系和暗物质光环模型的结构和动力学的研究不应仅限于完全分析模型。 SPHECOW等数值代码可以帮助打开系统研究的模型范围。这适用于此处讨论的Einasto模型,也适用于其他针对暗物质光环的模型,包括对Einasto模型的不同扩展。
Context: The Einasto model has become one of the most popular models for describing the density profile of dark matter haloes. There have been relatively few comprehensive studies on the dynamical structure of the Einasto model, mainly because only a limited number of properties can be calculated analytically. Aims: We want to systematically investigate the photometric and dynamical structure of the family of Einasto models over the entire model parameter space. Methods: We used the SpheCow code to explore the properties of the Einasto model. We systematically investigated how the most important properties change as a function of the Einasto index $n$. We considered both isotropic models and radially anisotropic models with an Osipkov-Merritt orbital structure. Results: We find that all Einasto models with $n<\tfrac12$ have a formal isotropic or Osipkov-Merritt distribution function that is negative in parts of phase space, and hence cannot be supported by such orbital structures. On the other hand, all models with larger values of $n$ can be supported by an isotropic orbital structure, or by an Osipkov-Merritt anisotropy, as long as the anisotropy radius is larger than a critical value. This critical anisotropy radius is a decreasing function of $n$, indicating that less centrally concentrated models allow for a larger degree of radial anisotropy. Conclusions: Studies of the structure and dynamics of models for galaxies and dark matter haloes should not be restricted to completely analytical models. Numerical codes such as SpheCow can help open up the range of models that are systematically investigated. This applies to the Einasto model discussed here, but also to other proposed models for dark matter haloes, including different extensions to the Einasto model.