论文标题
图像到图像翻译的应用在改进人行检测中
Application of image-to-image translation in improving pedestrian detection
论文作者
论文摘要
缺乏有效的目标区域使得在低强度光(包括行人识别和图像到图像翻译)中执行多个视觉功能变得困难。在这种情况下,通过联合使用红外和可见的图像,高质量信息的积累,即使在弱光下也可以检测行人。在这项研究中,我们将在LLVIP数据集上使用先进的深度学习模型,例如Pix2Pixgan和Yolov7,其中包含可见的infrared图像对,用于低光视觉。该数据集包含33672张图像,大多数图像都是在黑暗场景中捕获的,与时间和位置紧密同步。
The lack of effective target regions makes it difficult to perform several visual functions in low intensity light, including pedestrian recognition, and image-to-image translation. In this situation, with the accumulation of high-quality information by the combined use of infrared and visible images it is possible to detect pedestrians even in low light. In this study we are going to use advanced deep learning models like pix2pixGAN and YOLOv7 on LLVIP dataset, containing visible-infrared image pairs for low light vision. This dataset contains 33672 images and most of the images were captured in dark scenes, tightly synchronized with time and location.