论文标题

使用最大保征和贝叶斯分析的原理扩展扰动QCD的预测能力

Extending the Predictive Power of Perturbative QCD Using the Principle of Maximum Conformality and Bayesian Analysis

论文作者

Shen, Jian-Ming, Zhou, Zhi-Jian, Wang, Sheng-Quan, Yan, Jiang, Wu, Zhi-Fei, Wu, Xing-Gang, Brodsky, Stanley J.

论文摘要

除了评估高阶循环贡献外,扰动QCD(PQCD)预测的精度和预测能力还取决于两个重要问题:(1)如何实现可靠的,收敛的固定阶段,以及(2)如何可靠地估计未知高级项的贡献。递归使用重新归一化组方程,以及最大形式(PMC)的原理,消除了常规PQCD系列的重新归一化方案和规模的歧义。结果是一系列有限顺序,还满足了重新归一化组的所有原则。在本文中,我们提出了一种基于贝叶斯的新方法,以根据对概率分布的优化分析来估计未知高阶贡献的大小。我们表明,通过使用PMC共形系列,结合贝叶斯分析,可以始终如一地实现未知高阶项的高度可靠性估计值。因此,可以大大提高PQCD的预测能力。我们为两个PQCD可观测值说明了此过程:$ r_ {e^+e^ - } $和$r_τ$,它们在pqcd中最多可知四个循环。数值分析证实,通过使用与尺度无关的,更收敛的PMC共形系列,可以实现未知高阶贡献的可靠贝叶斯概率估计。

In addition to the evaluation of high-order loop contributions, the precision and predictive power of perturbative QCD (pQCD) predictions depends on two important issues: (1) how to achieve a reliable, convergent fixed-order series, and (2) how to reliably estimate the contributions of unknown higher-order terms. The recursive use of renormalization group equation, together with the Principle of Maximum Conformality (PMC), eliminates the renormalization scheme-and-scale ambiguities of the conventional pQCD series. The result is a conformal, scale-invariant series of finite order which also satisfies all of the principles of the renormalization group. In this paper we propose a novel Bayesian-based approach to estimate the size of the unknown higher order contributions based on an optimized analysis of probability distributions. We show that by using the PMC conformal series, in combination with the Bayesian analysis, one can consistently achieve high degree of reliability estimates for the unknown high order terms. Thus the predictive power of pQCD can be greatly improved. We illustrate this procedure for two pQCD observables: $R_{e^+e^-}$ and $R_τ$, which are each known up to four loops in pQCD. Numerical analyses confirm that by using the scale-independent and more convergent PMC conformal series, one can achieve reliable Bayesian probability estimates for the unknown higher-order contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源