论文标题

光谱特性与广义互补的Romanovski-Routh多项式有关

Spectral properties related to generalized complementary Romanovski-Routh polynomials

论文作者

Shukla, Vinay, Swaminathan, A.

论文摘要

互补的Romanovski-Routh多项式在提取正交多项式的特定特性中起重要作用。在这项工作中,互补的Romanovski-Routh多项式(GCRR)的广义形式具有高斯超几何表示,并满足了一种称为$ r_ {II} $的复发类型,称为$ r_ {II} $ type三个项复发关系,涉及两个涉及两个任意参数。确定了$ r_ {ii} $类型正交多项式的两种不同类型的GCRR多项式的自我扰动。分析了这些结果多项式的光谱特性,分析了三基因线性铅笔。这些铅笔矩阵的LU分解提供了涉及生物三相的有趣特性。讨论中多项式的零之间的隔离特性已建立。

Complementary Romanovski-Routh polynomials play an important role in extracting specific properties of orthogonal polynomials. In this work, a generalized form of the Complementary Romanovski-Routh polynomials (GCRR) that has the Gaussian hypergeometric representation and satisfies a particular type of recurrence called $R_{II}$ type three term recurrence relation involving two arbitrary parameters is considered. Self perturbation of GCRR polynomials leading to extracting two different types of $R_{II}$ type orthogonal polynomials are identified. Spectral properties of these resultant polynomials in terms of tri-diagonal linear pencil were analyzed. The LU decomposition of these pencil matrices provided interesting properties involving biorthogonality. Interlacing properties between the zeros of the polynomials in the discussion are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源