论文标题

Lim Ulrich序列和Boij-Söderberg锥

Lim Ulrich sequences and Boij-Söderberg cones

论文作者

Iyengar, Srikanth B., Ma, Linquan, Walker, Mark E.

论文摘要

本文将Boij,Eisenbud,Erman,Schreyer和Söderberg的结果扩展到有限生成的分级模块和多项式环上有限的无有限的无效配合物的结构,以使所有有限生成的分级环都允许线性正常化。关键的新输入是在此环上存在分级模块的Lim Ulrich序列。

This paper extends the results of Boij, Eisenbud, Erman, Schreyer, and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源