论文标题
Lim Ulrich序列和Boij-Söderberg锥
Lim Ulrich sequences and Boij-Söderberg cones
论文作者
论文摘要
本文将Boij,Eisenbud,Erman,Schreyer和Söderberg的结果扩展到有限生成的分级模块和多项式环上有限的无有限的无效配合物的结构,以使所有有限生成的分级环都允许线性正常化。关键的新输入是在此环上存在分级模块的Lim Ulrich序列。
This paper extends the results of Boij, Eisenbud, Erman, Schreyer, and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.