论文标题
标签:从布局学习电路空间嵌入
TAG: Learning Circuit Spatial Embedding From Layouts
论文作者
论文摘要
模拟和混合信号(AMS)电路设计仍然依赖人类设计专业知识。机器学习一直通过用人工智能代替人类体验来协助电路设计自动化。本文介绍了标签,这是一种从利用文本,自我注意力和图形的布局中学习电路表示的新范式。嵌入网络模型在没有手动标签的情况下学习空间信息。我们向AMS电路学习介绍文本嵌入和自我注意的机制。实验结果表明,具有工业罚款技术基准的实例之间的布局距离的能力。通过在案例研究中显示有限数据的其他三个学习任务的可传递性,可以验证电路表示的有效性:布局匹配预测,Wirelength估计和净寄生电容预测。
Analog and mixed-signal (AMS) circuit designs still rely on human design expertise. Machine learning has been assisting circuit design automation by replacing human experience with artificial intelligence. This paper presents TAG, a new paradigm of learning the circuit representation from layouts leveraging text, self-attention and graph. The embedding network model learns spatial information without manual labeling. We introduce text embedding and a self-attention mechanism to AMS circuit learning. Experimental results demonstrate the ability to predict layout distances between instances with industrial FinFET technology benchmarks. The effectiveness of the circuit representation is verified by showing the transferability to three other learning tasks with limited data in the case studies: layout matching prediction, wirelength estimation, and net parasitic capacitance prediction.