论文标题
通用时间依赖的金茨堡 - 兰道理论
The Universal Time-Dependent Ginzburg-Landau theory
论文作者
论文摘要
我们研究了Schwinger-Keldysh有效野外理论框架内超导体的流体动力学。我们表明,在超导相变的附近,最通用的前阶EFT满足了局部久保 - 马丁 - 辛辛格条件的描述是用时间依赖性的金茨堡 - 兰道(TDGL)方程的版本来描述的,并用随机项增强了。此版本的TDGL适用于无间隙制度,独立于任何微观细节。在这种方法中,有可能系统地包括温度和热导率不均匀的影响,以及时间逆转的显式或自发断裂。我们还引入了约瑟夫森关系的热版本,并使用它来构建一个外来的流体动力学,描述了物质的相位,即热量可以在没有消散的情况下流动。
We study the hydrodynamics of superconductors within the framework of Schwinger-Keldysh Effective Field Theory. We show that in the vicinity of the superconducting phase transition the most general leading-order EFT satisfying the local Kubo-Martin-Schwinger condition is described by a version of the Time-Dependent Ginzburg-Landau (TDGL) equations augmented with stochastic terms. This version of TDGL is applicable in the gapless regime independently of any microscopic details. Within this approach, it is possible to include systematically the effects of non-uniform temperature and heat conductivity, as well as explicit or spontaneous breaking of time reversal. We also introduce a thermal version of the Josephson relation and use it to construct an exotic hydrodynamics describing a phase of matter where heat can flow without dissipation.