论文标题

部分可观测时空混沌系统的无模型预测

On the Second Kahn--Kalai Conjecture

论文作者

Mossel, Elchanan, Niles-Weed, Jonathan, Sun, Nike, Zadik, Ilias

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For any given graph $H$, we are interested in $p_\mathrm{crit}(H)$, the minimal $p$ such that the Erdős-Rényi graph $G(n,p)$ contains a copy of $H$ with probability at least $1/2$. Kahn and Kalai (2007) conjectured that $p_\mathrm{crit}(H)$ is given up to a logarithmic factor by a simpler "subgraph expectation threshold" $p_\mathrm{E}(H)$, which is the minimal $p$ such that for every subgraph $H'\subseteq H$, the Erdős-Rényi graph $G(n,p)$ contains \emph{in expectation} at least $1/2$ copies of $H'$. It is trivial that $p_\mathrm{E}(H) \le p_\mathrm{crit}(H)$, and the so-called "second Kahn-Kalai conjecture" states that $p_\mathrm{crit}(H) \lesssim p_\mathrm{E}(H) \log e(H)$ where $e(H)$ is the number of edges in $H$. In this article, we present a natural modification $p_\mathrm{E, new}(H)$ of the Kahn--Kalai subgraph expectation threshold, which we show is sandwiched between $p_\mathrm{E}(H)$ and $p_\mathrm{crit}(H)$. The new definition $p_\mathrm{E, new}(H)$ is based on the simple observation that if $G(n,p)$ contains a copy of $H$ and $H$ contains \emph{many} copies of $H'$, then $G(n,p)$ must also contain \emph{many} copies of $H'$. We then show that $p_\mathrm{crit}(H) \lesssim p_\mathrm{E, new}(H) \log e(H)$, thus proving a modification of the second Kahn--Kalai conjecture. The bound follows by a direct application of the set-theoretic "spread" property, which led to recent breakthroughs in the sunflower conjecture by Alweiss, Lovett, Wu and Zhang and the first fractional Kahn--Kalai conjecture by Frankston, Kahn, Narayanan and Park.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源