论文标题

部分可观测时空混沌系统的无模型预测

Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census

论文作者

Kifer, Daniel, Abowd, John M., Ashmead, Robert, Cumings-Menon, Ryan, Leclerc, Philip, Machanavajjhala, Ashwin, Sexton, William, Zhuravlev, Pavel

论文摘要

本文的目的是指导对语义隐私保证的解释,以保证差异隐私的某些主要变化,其中包括纯,近似,rényi,零集中和$ f $ dixinal的隐私。我们解释了隐私会计参数,常见语义和贝叶斯语义(包括新的结果)。驾驶申请是对2020年人口普查公法的机密保护措施的解释94-171重新划分数据摘要文件,于2021年8月12日发布,该文件首次由正式的隐私保证生产。

The purpose of this paper is to guide interpretation of the semantic privacy guarantees for some of the major variations of differential privacy, which include pure, approximate, Rényi, zero-concentrated, and $f$ differential privacy. We interpret privacy-loss accounting parameters, frequentist semantics, and Bayesian semantics (including new results). The driving application is the interpretation of the confidentiality protections for the 2020 Census Public Law 94-171 Redistricting Data Summary File released August 12, 2021, which, for the first time, were produced with formal privacy guarantees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源