论文标题

部分可观测时空混沌系统的无模型预测

Deep low-frequency radio observations of Abell 2256 II: The ultra-steep spectrum radio halo

论文作者

Rajpurohit, K., Osinga, E., Brienza, M., Botteon, A., Brunetti, G., Forman, W. R., Riseley, C. J., Vazza, F., Bonafede, A., van Weeren, R. J., Brüggen, M., Rajpurohit, S., Drabent, A., Dallacasa, D., Rossetti, M., Rajpurohit, A. S., Hoeft, M., Bonnassieux, E., Cassano, R., Miley, G. K.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present the first detailed analysis of the radio halo in the merging galaxy cluster Abell 2256 using the LOFAR, uGMRT, and VLA. These observations combined with archival X-ray data allowed us to study the halo emission with unprecedented detail. The integrated radio emission from the entire halo is characterized by an ultra-steep spectrum, which can be described by a power law with $α_{144 \rm MHz}^{1.5 \rm GHz}=-1.63\pm0.03$, and a radial steepening in the outer regions. The halo is significantly underluminous according to the scaling relations between radio power and mass at 1.4 GHz but not at 150 MHz; ultra-steep spectrum halos are predicted to be statistically underluminous. Despite the complex structure of this system, the radio halo morphology is remarkably similar to that of the X-ray emission. The radio surface brightness distribution across the halo is strongly correlated with the X-ray brightness of the intracluster medium. The derived correlations show sublinear slopes and there are distinct structures: the core is $\rm I_{R}\propto I_{X}^{1.51}$, the outermost region $\rm I_{R}\propto I_{X}^{0.41}$, and we find radio morphological connections with X-ray discontinuities. We also find a strong anti-correlation between the radio spectral index and the X-ray surface brightness, implying radial steepening. We suggests that the halo core is either related to old plasma from previous AGN activity, being advected, compressed and re-accelerated by mechanisms activated by the cold front or less turbulent with strong magnetic field in the core. The change in the radio vs X-ray correlation slopes in the outer regions of the halo could be due to a radial decline of magnetic field, increase in the number density of seed particles or increasing turbulence. Our findings suggest that that the emitting volume is not homogenous according to turbulence re-acceleration models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源