论文标题

一种预测的机会约束重新平衡在需求中的重新平衡方法

A Predictive Chance Constraint Rebalancing Approach to Mobility-on-Demand Services

论文作者

Jacobsen, Sten Elling Tingstad, Lindman, Anders, Kulcsár, Balázs

论文摘要

本文考虑了诸如Ub​​er或Didi Rider之类的移动性(MOD)服务中的供需不平衡问题的问题。这种不平衡是由于随机旅行需求不平衡引起的,可以通过空无一量的空车来阻止。为此,我们提出了一种方法,将估计的随机旅行需求模式包括到随机模型预测控制(SMPC)中,以重新平衡空车MOD乘车服务。更确切地说,我们首先使用高斯流程回归(GPR)估算客运旅行需求,该过程为时间模式预测提供了不确定性界限。然后,我们为自动乘车服务服务制定了SMPC,并将需求预测与不确定性界限整合到退化的地平线MOD优化中。为了在估计的随机需求预测下确保上述优化中的约束满意度,我们使用用户定义的置信区间采用概率约束方法。通过概率约束,将视野MOD优化恢复,从而要求偶然的约束模型预测控制(CCMPC)。提出的方法的好处是双重的。首先,从数据的旅行需求不确定性预测自然可以嵌入MOD优化框架中。我们表明,对于给定的最小车队尺寸,每个站的不平衡都可以保持在一定阈值以下,并具有用户定义的概率。其次,可以将CCMPC进一步放松到混合级别LP(MILP)中,我们表明可以将MILP求解为相应的线性程序,该线性始终允许积分解决方案。最后,我们通过高保真运输模拟证明,通过调整限制的置信度,可以实现接近最佳Oracle性能的机会。与仅使用GPR的平均预测相比,相应的客户等待时间减少了4%。

This paper considers the problem of supply-demand imbalances in Mobility-on-Demand (MoD) services, such as Uber or DiDi Rider. Such imbalances are due to uneven stochastic travel demand and can be prevented by proactively rebalance empty vehicles. To this end we propose a method that include estimated stochastic travel demand patterns into stochastic model predictive control (SMPC) for rebalancing of empty vehicles MoD ride-hailing service. More precisely, we first estimate passenger travel demand using Gaussian Process Regression (GPR), which provides demand uncertainty bounds for time pattern prediction. We then formulate a SMPC for the autonomous ride-hailing service and integrate demand predictions with uncertainty bounds into a receding horizon MoD optimization. In order to guarantee constraint satisfaction in the above optimization under estimated stochastic demand prediction, we employ a probabilistic constraining method with user defined confidence interval. Receding horizon MoD optimization with probabilistic constraints thereby calls for Chance Constrained Model Predictive Control (CCMPC). The benefits of the proposed method are twofold. First, travel demand uncertainty prediction from data can naturally be embedded into the MoD optimization framework. We show that for a given minimal fleet size the imbalance in each station can be kept below a certain threshold with a user defined probability. Second, CCMPC can further be relaxed into a Mixed-Integer-LP (MILP) and we show that the MILP can be solved as a corresponding Linear-Program which always admits a integral solution. Finally, we demonstrate through high-fidelity transportation simulations, that by tuning the confidence bound on the chance constraint close to optimal oracle performance can be achieved. The corresponding median customer wait time is reduced by 4% compared to using only the mean prediction of the GPR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源